Hydrothermal Synthesis and Characterization of KSn₂(PO₄)₃

Yaohua Xu,* Shouhua Feng and Wengin Pang

Key Laboratory of Inorganic Hydrothermal Synthesis, Department of Chemistry, Jilin University, Changchun 130023, PR China

 $KSn_2(PO_4)_3$ is synthesized hydrothermally from the $K_2O-SnO_2-P_2O_5-H_2O$ system, and characterized by X-ray powder diffraction, Raman and IR spectroscopy.

Thermally stable $KSn_2(PO_4)_3$, which has a Nasicon-type structure (space group R3c) with a three-dimensional network of PO₄ tetrahedra corner-shared with SnO_6 octahedra, has been prepared previously by solid-state reactions.¹ However, there have been no reports of a hydrothermal synthesis so far. Here, we report a novel hydrothermal crystallization for the synthesis of $KSn_2(PO_4)_3$.

Hydrothermal crystallization of $KSn_2(PO_4)_3$ was carried out in a stainless steel autoclave with a Teflon liner under

Fig. 1 X-Ray powder diffraction pattern of the product

autogenous pressure. $SnO_2(AR)$, 85% orthophosphoric acid, and KOH solution (2 mol dm⁻³), a mineralizer, were mixed in the molar ratio $5K_2O: SnO_2: 3P_2O_5$ in the Teflon liner. The autoclave was sealed and heated in an oven at 250 °C for 5–7 days. After cooling, the product was filtered, washed with distilled water, and dried at ambient temperature.

The crystalline product was identified by means of X-ray powder diffraction (Fig. 1) recorded with a Rigaku D/max-IIIA diffractometer using Cu-K α ($\lambda = 1.5418$ Å) radiation and is similar to that of the material previously prepared by the solid state reaction.² The product is free of impurities. The Raman spectrum (Fig. 2) was recorded on a Ramanor SPEX

Fig. 2 Raman spectrum of the product

1403 double spectrometer with an argon-ion laser (488.0 nm line, 100 mW). The spectrum is unique and quite characteristic of KSn₂(PO₄)₃ with two strong peaks at 158 and 455 cm⁻¹ and weaker peaks at 1018–1124 cm^{-1,3} The IR spectrum (Fig. 3) shows absorption bands at 500–650 cm⁻¹ and 900– 1200 cm⁻¹, which are attributed to PO₄ bending and stretching vibrations.^{4,5} DTA-TG (differential thermal analysis-thermogravimetric analysis) show that $KSn_2(PO_4)_3$ synthesized hydrothermally was stable at 1200 °C.

Received, 24th March 1993; Com. 3/01709E

References

- 1 R. Perret and A. Boudjada, C.R. Hebd. Seances Acad. Sci., Ser. C, 1976, 282, 245.
- 2 P. Nagornyi and S. Lugovaya, Zh. Neorg. Khim., 1981, 26, 2871.
- 3 J. Warc and J. Winand, Solid State Chem., 1991, 93, 341.
 4 Y. Yue and W. Pang, J. Chem. Soc., Chem. Commun., 1990, 1166.
 5 M. Barj, Solid State Ionics, 1983, 11, 157.